统计策略搜索强化学习方法及应用 2025 chm pdf kindle rb azw3 下载 115盘

统计策略搜索强化学习方法及应用电子书下载地址
内容简介:
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
书籍目录:
第1章 强化学习概述···························································································1
1.1 机器学习中的强化学习··········································································1
1.2 智能控制中的强化学习··········································································4
1.3 强化学习分支··························································································8
1.4 本书贡献·······························································································11
1.5 本书结构·······························································································12
参考文献········································································································14
第2章 相关研究及背景知识·············································································19
2.1 马尔可夫决策过程················································································19
2.2 基于值函数的策略学习算法·································································21
2.2.1 值函数·······················································································21
2.2.2 策略迭代和值迭代····································································23
2.2.3 Q-learning ··················································································25
2.2.4 基于小二乘法的策略迭代算法·············································27
2.2.5 基于值函数的深度强化学习方法·············································29
2.3 策略搜索算法························································································30
2.3.1 策略搜索算法建模····································································31
2.3.2 传统策略梯度算法(REINFORCE算法)······························32
2.3.3 自然策略梯度方法(Natural Policy Gradient)························33
2.3.4 期望化的策略搜索方法·····················································35
2.3.5 基于策略的深度强化学习方法·················································37
2.4 本章小结·······························································································38
参考文献········································································································39
第3章 策略梯度估计的分析与改进·································································42
3.1 研究背景·······························································································42
3.2 基于参数探索的策略梯度算法(PGPE算法)···································44
3.3 梯度估计方差分析················································································46
3.4 基于基线的算法改进及分析·························································48
3.4.1 基线的基本思想································································48
3.4.2 PGPE算法的基线······························································49
3.5 实验·······································································································51
3.5.1 示例···························································································51
3.5.2 倒立摆平衡问题········································································57
3.6 总结与讨论····························································································58
参考文献········································································································60
第4章 基于重要性采样的参数探索策略梯度算法··········································63
4.1 研究背景·······························································································63
4.2 异策略场景下的PGPE算法·································································64
4.2.1 重要性加权PGPE算法·····························································65
4.2.2 IW-PGPE算法通过基线减法减少方差····································66
4.3 实验结果·······························································································68
4.3.1 示例···························································································69
4.3.2 山地车任务················································································78
4.3.3 机器人仿真控制任务································································81
4.4 总结和讨论····························································································88
参考文献·····························
作者介绍:
赵婷婷,天津科技大学人工智能学院副教授,主要研究方向为人工智能、机器学习。中国计算机协会(CCF) 会员、YOCSEF 会员、中国人工智能学会会员、人工智能学会模式识别专委会委员,2017年获得天津市"131”创新型人才培养工程第二层次人选称号。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的最近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。最后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
网站评分
书籍多样性:7分
书籍信息完全性:3分
网站更新速度:6分
使用便利性:7分
书籍清晰度:8分
书籍格式兼容性:6分
是否包含广告:4分
加载速度:7分
安全性:8分
稳定性:5分
搜索功能:4分
下载便捷性:9分
下载点评
- 品质不错(388+)
- 差评(392+)
- 推荐购买(163+)
- 无缺页(443+)
- 傻瓜式服务(382+)
- 书籍多(79+)
下载评价
- 网友 敖***菡:
是个好网站,很便捷
- 网友 谢***灵:
推荐,啥格式都有
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 濮***彤:
好棒啊!图书很全
- 网友 温***欣:
可以可以可以
- 网友 戈***玉:
特别棒
- 网友 宫***玉:
我说完了。
- 网友 游***钰:
用了才知道好用,推荐!太好用了
喜欢"统计策略搜索强化学习方法及应用"的人也看了
了凡四训(共4册) 2025 chm pdf kindle rb azw3 下载 115盘
课外阅读经典书目第一辑(启发童话小巴士桥梁书共5册) 2025 chm pdf kindle rb azw3 下载 115盘
第22号妻子(小说版的《男人来自火星,女人来自金星》 让相爱的人读懂对方) 2025 chm pdf kindle rb azw3 下载 115盘
欧阳询《九成宫醴泉铭》 2025 chm pdf kindle rb azw3 下载 115盘
海外直订Art Museums Plus: Cultural Excursions in New England 艺术博物馆Plus:新英格兰的文化游览 2025 chm pdf kindle rb azw3 下载 115盘
保温工 2025 chm pdf kindle rb azw3 下载 115盘
四国军棋II 2025 chm pdf kindle rb azw3 下载 115盘
机器猫 哆啦A梦14 2025 chm pdf kindle rb azw3 下载 115盘
GMAT语法红宝书 赵丽编著 中国石化出版社【正版】 2025 chm pdf kindle rb azw3 下载 115盘
高尔夫球运动与管理专业精品教材--高尔夫球童技能教程 2025 chm pdf kindle rb azw3 下载 115盘
- 基层医师实用抗感染手册 2025 chm pdf kindle rb azw3 下载 115盘
- 血液净化治疗护理学 2025 chm pdf kindle rb azw3 下载 115盘
- 泰国时尚 Thailand Chic 2025 chm pdf kindle rb azw3 下载 115盘
- 最美徽州 2025 chm pdf kindle rb azw3 下载 115盘
- 学习的超级动力 相信孩子 就能创造奇迹 中学版 房超平,王永春 著 2025 chm pdf kindle rb azw3 下载 115盘
- 2024版 5年中考3年模拟初中试卷九年级数学上册 沪科版HK 初三9年级数学上五年中考三年模拟同步单元专项期中期末测试卷 5+3曲一线 2025 chm pdf kindle rb azw3 下载 115盘
- 我的儿子皮卡成长记全套6册注音版带拼音曹文轩的纯美小说系列 儿童文学正版包邮一二年级上下册小学生课外阅读书籍故事书尖叫正版 2025 chm pdf kindle rb azw3 下载 115盘
- 高中生同步写字(高1下必修3-4人教版楷书) 2025 chm pdf kindle rb azw3 下载 115盘
- 数据库技术与应用——Access(21世纪高等学校计算机基础实用规划教材) 2025 chm pdf kindle rb azw3 下载 115盘
- 公安专业知识(公安机关录用人民警察考试教材) 2025 chm pdf kindle rb azw3 下载 115盘
书籍真实打分
故事情节:8分
人物塑造:8分
主题深度:8分
文字风格:9分
语言运用:7分
文笔流畅:5分
思想传递:6分
知识深度:4分
知识广度:8分
实用性:6分
章节划分:4分
结构布局:4分
新颖与独特:6分
情感共鸣:5分
引人入胜:6分
现实相关:6分
沉浸感:3分
事实准确性:4分
文化贡献:9分