Making sense of data了解数据:探索数据分析与数据挖掘实用指南 2025 chm pdf kindle rb azw3 下载 115盘

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:5分
书籍信息完全性:3分
网站更新速度:6分
使用便利性:5分
书籍清晰度:4分
书籍格式兼容性:3分
是否包含广告:4分
加载速度:4分
安全性:6分
稳定性:3分
搜索功能:9分
下载便捷性:5分
下载点评
- 差评(170+)
- 还行吧(283+)
- 格式多(188+)
- 赞(575+)
- azw3(410+)
- 一般般(465+)
- 差评少(319+)
- 体验差(241+)
- 不亏(513+)
- 实惠(237+)
- 全格式(396+)
下载评价
- 网友 谢***灵:
推荐,啥格式都有
- 网友 蓬***之:
好棒good
- 网友 冷***洁:
不错,用着很方便
- 网友 步***青:
。。。。。好
- 网友 薛***玉:
就是我想要的!!!
- 网友 邱***洋:
不错,支持的格式很多
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 晏***媛:
够人性化!
- 网友 养***秋:
我是新来的考古学家
- 网友 温***欣:
可以可以可以
- 网友 寿***芳:
可以在线转化哦
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 焦***山:
不错。。。。。
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
阅读力测试 无 广西师范大学出版社 【新华书店正版图书籍】 2025 chm pdf kindle rb azw3 下载 115盘
比较家庭法学 2025 chm pdf kindle rb azw3 下载 115盘
商业地产前期开发手册 2025 chm pdf kindle rb azw3 下载 115盘
财务管理教程 2025 chm pdf kindle rb azw3 下载 115盘
壬辰录 韩国汉文小说集成编委会 编 2025 chm pdf kindle rb azw3 下载 115盘
小兔汤姆成长的烦恼图画书 汤姆踢足球 2025 chm pdf kindle rb azw3 下载 115盘
现货包邮 基础写作教程(第三版) 第3版 裴显生 尉天骄 新生态大学写作课程系列教材 高等教育出版社 2025 chm pdf kindle rb azw3 下载 115盘
注册道路工程师专业考试城市道路工程标准规范摘录汇编 2025 chm pdf kindle rb azw3 下载 115盘
湿疹皮炎与皮肤过敏反应的诊断与治疗 李邻峰 编 北京大学医学出版社【正版可开发票】 2025 chm pdf kindle rb azw3 下载 115盘
奇迹校园 2025 chm pdf kindle rb azw3 下载 115盘
- 建筑工程 中国建筑工业出版社 2025 chm pdf kindle rb azw3 下载 115盘
- 楚辞(中华国学经典精粹·诗词文论必读本) 2025 chm pdf kindle rb azw3 下载 115盘
- 高压电场干燥和解冻技术 2025 chm pdf kindle rb azw3 下载 115盘
- 海街日记 2025 chm pdf kindle rb azw3 下载 115盘
- 聚合物制备工程/高等学校专业教材 2025 chm pdf kindle rb azw3 下载 115盘
- 标准法语口语句典+常用词词典 2025 chm pdf kindle rb azw3 下载 115盘
- 围棋从入门到九段2.守拙(10级到5级1000题) 2025 chm pdf kindle rb azw3 下载 115盘
- 正版 保障筑路苍穹:中国首座航空货运枢纽建设纪实戴劲松9787511573032人民日报出版社 2025 chm pdf kindle rb azw3 下载 115盘
- 触动心底的幸福-精彩法文晨读 2025 chm pdf kindle rb azw3 下载 115盘
- 新法汉小词典 2025 chm pdf kindle rb azw3 下载 115盘
书籍真实打分
故事情节:6分
人物塑造:4分
主题深度:8分
文字风格:5分
语言运用:9分
文笔流畅:8分
思想传递:6分
知识深度:3分
知识广度:8分
实用性:3分
章节划分:3分
结构布局:4分
新颖与独特:6分
情感共鸣:6分
引人入胜:4分
现实相关:7分
沉浸感:3分
事实准确性:7分
文化贡献:7分