Python预测之美:数据分析与算法实战 2025 chm pdf kindle rb azw3 下载 115盘

Python预测之美:数据分析与算法实战电子书下载地址
内容简介:
Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,因此,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析与应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护起来更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。
《Python预测之美:数据分析与算法实战》共分为三部分。第一部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路。第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心品味。第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实践中提炼价值。
书籍目录:
第1 篇 预测入门
第1 章 认识预测 . 2
1.1 什么是预测 . 2
1.1.1 占卜术 . 3
1.1.2 神秘的地动仪 . 3
1.1.3 科学预测 . 5
1.1.4 预测的原则 . 7
1.2 前沿技术 . 9
1.2.1 大数据与预测 . 10
1.2.2 大数据预测的特点 11
1.2.3 人工智能与预测 . 15
1.2.4 人工智能预测的特点 . 17
1.2.5 典型预测案例 . 18
1.3 Python 预测初步 . 26
1.3.1 数据预处理 . 27
1.3.2 建立模型 . 31
1.3.3 预测及误差分析 . 34
第2 章 预测方法论 . 37
2.1 预测流程 . 37
2.1.1 确定主题 . 38
2.1.2 收集数据 . 40
2.1.3 选择方法 . 42
2.1.4 分析规律 . 43
2.1.5 建立模型 . 48
2.1.6 评估效果 . 51
2.1.7 发布模型 . 52
2.2 指导原则 . 53
2.2.1 界定问题 . 53
2.2.2 判断预测法 . 55
2.2.3 外推预测法 . 56
2.2.4 因果预测法 . 58
2.3 团队构成 . 59
2.3.1 成员分类 . 59
2.3.2 数据氛围 . 61
2.3.3 团队合作 . 63
第3 章 探索规律 . 65
3.1 相关分析 . 65
3.1.1 自相关分析 . 65
3.1.2 偏相关分析 . 68
3.1.3 简单相关分析 . 69
3.1.4 互相关分析 . 80
3.1.5 典型相关分析 . 82
3.2 因果分析 . 87
3.2.1 什么是因果推断 . 87
3.2.2 因果推断的方法 . 90
3.2.3 时序因果推断 . 93
3.3 聚类分析 . 98
3.3.1 K-Means 算法 . 98
3.3.2 系统聚类算法 . 102
3.4 关联分析 110
3.4.1 关联规则挖掘 110
3.4.2 Apriori 算法 . 111
3.4.3 Eclat 算法 120
3.4.4 序列模式挖掘 . 123
3.4.5 SPADE 算法 124
第4 章 特征工程 . 136
4.1 特征变换 . 136
4.1.1 概念分层 . 137
4.1.2 标准化 . 138
4.1.3 离散化 . 141
4.1.4 函数变换 . 143
4.1.5 深入表达 . 144
4.2 特征组合 . 145
4.2.1 基于经验 . 145
4.2.2 二元组合 . 146
4.2.3 高阶多项式 . 148
4.3 特征评价 . 151
4.3.1 特征初选 . 151
4.3.2 影响评价 . 152
4.3.3 模型法 . 167
4.4 特征学习 . 172
4.4.1 基本思路 . 173
4.4.2 特征表达式 . 174
4.4.3 初始种群 . 183
4.4.4 适应度 . 185
4.4.5 遗传行为 . 187
4.4.6 实例分析 . 192
第2 篇 预测算法
第5 章 参数优化 . 199
5.1 交叉验证 . 199
5.2 网格搜索 . 201
5.3 遗传算法 . 203
5.3.1 基本概念 . 203
5.3.2 遗传算法算例 . 204
5.3.3 遗传算法实现步骤 . 209
5.3.4 遗传算法Python 实现 210
5.4 粒子群优化 . 213
5.4.1 基本概念及原理 . 213
5.4.2 粒子群算法的实现步骤 . 214
5.4.3 用Python 实现粒子群算法 215
5.5 模拟退火 . 220
5.5.1 基本概念及原理 . 220
5.5.2 模拟退火算法的实现步骤 . 221
5.5.3 模拟退火算法Python 实现 222
第6 章 线性回归及其优化 226
6.1 多元线性回归 . 226
6.1.1 回归模型与基本假定 . 226
6.1.2 最小二乘估计 . 227
6.1.3 回归方程和回归系数的显著性检验 . 228
6.1.4 多重共线性 . 229
6.2 Ridge 回归 233
6.2.1 基本概念 . 233
6.2.2 岭迹曲线 . 233
6.2.3 基于GCV 准则确定岭参数 . 235
6.2.4 Ridge 回归的Python 实现 . 237
6.3 Lasso 回归 . 237
6.3.1 基本概念 . 237
6.3.2 使用LAR 算法求解Lasso . 238
6.3.3 Lasso 算法的Python 实现 . 240
6.4 分位数回归 . 242
6.4.1 基本概念 . 242
6.4.2 分位数回归的计算 . 245
6.4.3 用单纯形法求解分位数回归及Python 实现 246
6.5 稳健回归 . 248
6.5.1 基本概念 . 249
6.5.2 M 估计法及Python 实现 . 250
第7 章 复杂回归分析 . 254
7.1 梯度提升回归树(GBRT) . 254
7.1.1 Boosting 方法简介 254
7.1.2 AdaBoost 算法 255
7.1.3 提升回归树算法 . 257
7.1.4 梯度提升 . 259
7.1.5 GBRT 算法的Python 实现 261
7.2 深度神经网络 . 264
7.2.1 基本概念 . 264
7.2.2 从线性回归说起 . 269
7.2.3 浅层神经网络 . 272
7.2.4 深层次拟合问题 . 277
7.2.5 DNN 的Python 实现 278
7.3 支持向量机回归 . 281
7.3.1 基本问题 . 281
7.3.2 LS-SVMR 算法 . 284
7.3.3 LS-SVMR 算法的Python 实现 . 285
7.4 高斯过程回归 . 286
7.4.1 GPR 算法 287
7.4.2 GPR 算法的Python 实现 . 289
第8 章 时间序列分析 . 292
8.1 Box-Jenkins 方法 292
8.1.1 p 阶自回归模型 293
8.1.2 q 阶移动平均模型 295
8.1.3 自回归移动平均模型 . 296
8.1.4 ARIMA 模型 . 300
8.1.5 ARIMA 模型的Python 实现 . 301
8.2 门限自回归模型 . 309
8.2.1 TAR 模型的基本原理 309
8.2.2 TAR 模型的Python 实现 . 310
8.3 GARCH 模型族 313
8.3.1 线性ARCH 模型 313
8.3.2 GRACH 模型 315
8.3.3 EGARCH 模型 . 315
8.3.4 PowerARCH 模型 . 316
8.4 向量自回归模型 . 318
8.4.1 VAR 模型基本原理 318
8.4.2 VAR 模型的Python 实现 . 320
8.5 卡尔曼滤波 . 324
8.5.1 卡尔曼滤波算法介绍 . 324
8.5.2 卡尔曼滤波的Python 实现 326
8.6 循环神经网络 . 328
8.6.1 RNN 的基本原理 329
8.6.2 RNN 算法的Python 实现 332
8.7 长短期记忆网络 . 335
8.7.1 LSTM 模型的基本原理 . 336
8.7.2 LSTM 算法的Python 实现 341
第3 篇 预测应用
第9 章 短期日负荷曲线预测 . 345
9.1 电力行业负荷预测介绍 . 345
9.2 短期日负荷曲线预测的基本要求 . 346
9.3 预测建模准备 . 347
9.3.1 基础数据采集 . 347
9.3.2 缺失数据处理 . 349
9.3.3 潜在规律分析 . 352
9.4 基于DNN 算法的预测 355
9.4.1 数据要求 . 356
9.4.2 数据预处理 . 356
9.4.3 网络结构设计 . 357
9.4.4 建立模型 . 358
9.4.5 预测实现 . 359
9.4.6 效果评估 . 359
9.5 基于LSTM 算法的预测 361
9.5.1 数据要求 . 361
9.5.2 数据预处理 . 362
9.5.3 网络结构设计 . 362
9.5.4 建立模型 . 363
9.5.5 预测实现 . 364
9.5.6 效果评估 . 364
第10 章 股票价格预测 . 367
10.1 股票市场简介 . 367
10.2 获取股票数据 . 368
10.3 基于VAR 算法的预测 . 371
10.3.1 平稳性检验 . 371
10.3.2 VAR 模型定阶 372
10.3.3 预测及效果验证 . 373
10.4 基于LSTM 算法的预测. 375
10.4.1 数据要求 . 375
10.4.2 数据预处理 . 376
10.4.3 网络结构设计 . 377
10.4.4 建立模型 . 377
10.4.5 预测实现 . 378
10.4.6 效果评估 . 378
参考文献 . 381
作者介绍:
高级数据分析师,在互联网/电信/电力领域具有丰富的数据分析与挖掘建模经验。曾服务于华为技术软件有限公司、深圳市康拓普信息技术有限公司、深圳市数聚能源科技有限公司等企业,期间曾在小象学院兼职R语言数据挖掘讲师。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,因此,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析与应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护起来更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。
《Python预测之美:数据分析与算法实战》共分为三部分。第一部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路。第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心品味。第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实践中提炼价值。
网站评分
书籍多样性:5分
书籍信息完全性:8分
网站更新速度:3分
使用便利性:4分
书籍清晰度:3分
书籍格式兼容性:4分
是否包含广告:4分
加载速度:8分
安全性:9分
稳定性:6分
搜索功能:5分
下载便捷性:9分
下载点评
- 中评多(497+)
- 好评多(624+)
- 藏书馆(572+)
- 赞(607+)
- 下载速度快(122+)
- 博大精深(304+)
下载评价
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 利***巧:
差评。这个是收费的
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 步***青:
。。。。。好
- 网友 习***蓉:
品相完美
- 网友 相***儿:
你要的这里都能找到哦!!!
- 网友 寿***芳:
可以在线转化哦
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 詹***萍:
好评的,这是自己一直选择的下载书的网站
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 辛***玮:
页面不错 整体风格喜欢
喜欢"Python预测之美:数据分析与算法实战"的人也看了
别墅空间,本社编,中国林业出版社,9787503859816 2025 chm pdf kindle rb azw3 下载 115盘
十大生物学家 2025 chm pdf kindle rb azw3 下载 115盘
红袋鼠学前游戏2010年第一季度合订本 2025 chm pdf kindle rb azw3 下载 115盘
童立方·国学大师点评中国历史人物:文天祥 2025 chm pdf kindle rb azw3 下载 115盘
数学 三年级上册 2025 chm pdf kindle rb azw3 下载 115盘
经纶学典教材解析 2025 chm pdf kindle rb azw3 下载 115盘
2022年春季开学用 小学学霸作业本道德与法治三年级下册 通用版 pass绿卡图书 同步训练练习题辅导教材书附试卷达标测试卷同步教材课时天天练一课一练 2025 chm pdf kindle rb azw3 下载 115盘
洛克菲勒写给儿子的38封信 2025 chm pdf kindle rb azw3 下载 115盘
红宝书·考研英语考前预测 2025 chm pdf kindle rb azw3 下载 115盘
会计综合模拟实训 2025 chm pdf kindle rb azw3 下载 115盘
- 外贸企业出口退税操作手册 2025 chm pdf kindle rb azw3 下载 115盘
- 曹文轩作品·侠鸟传奇·失落的酒坊 2025 chm pdf kindle rb azw3 下载 115盘
- 智慧妈妈的两个孩子养育课 2025 chm pdf kindle rb azw3 下载 115盘
- 中国打击乐教程1:大堂鼓节奏与演奏手法训练 2025 chm pdf kindle rb azw3 下载 115盘
- 客户服务管理 2025 chm pdf kindle rb azw3 下载 115盘
- 你若不曾来,叫我如何老 2025 chm pdf kindle rb azw3 下载 115盘
- 成长初始革命年 2025 chm pdf kindle rb azw3 下载 115盘
- 贪污贿赂犯罪案件侦查实务(1)/反贪污贿赂岗位素能培训丛书 2025 chm pdf kindle rb azw3 下载 115盘
- 手风琴考级曲集 第5套(附CD一张) 2025 chm pdf kindle rb azw3 下载 115盘
- CAXA制造工程师2015项目化教程(高职高专十三五规划教材) 2025 chm pdf kindle rb azw3 下载 115盘
书籍真实打分
故事情节:4分
人物塑造:4分
主题深度:4分
文字风格:3分
语言运用:3分
文笔流畅:3分
思想传递:5分
知识深度:5分
知识广度:8分
实用性:4分
章节划分:5分
结构布局:4分
新颖与独特:8分
情感共鸣:5分
引人入胜:3分
现实相关:6分
沉浸感:4分
事实准确性:4分
文化贡献:9分