生物信息学课程导引 2025 chm pdf kindle rb azw3 下载 115盘

生物信息学课程导引电子书下载地址
内容简介:
本书根据清华大学承办的全国生物信息学暑期学校课程,高度概括地介绍了与生物信息学研究紧密相关的11门基础课程和15个前沿专题报告。全书分12章,包括: 生物信息学引论、生物信息学中的基础统计、计算基因组学专题、生物信息学中的高级统计、计算生物学算法基础、生物信息学中的多元统计、人类疾病关联研究方法与实例、生物信息学中的数据挖掘与知识发现、生物信息学应用工具、蛋白质结构与功能基础、中医药研究的计算系统生物学方法、生物信息学与计算系统生物学前沿等。本书不仅可以作为生物信息学初学者的入门读物,还可作为生物信息学领域专业研究人员高度概括而又不失系统性的参考书籍。
书籍目录:
1 BasicsforBioinfbrmatics.
Xuegong Zhang,Xueya Zhou,and Xiaowo Wang
1.1 WhatIs l3;ioinformatics
1.2 SomeBasicBiology
1.2.1 Scale andTime.
1.2.2 Cells.
1.2.3 DNA and Chromosome
1.2.4 TheCen~a1Dogma.
1.2.5 GenesandtheGenome.一
1.2.6 Measurements Along the Central Dogma
1.2.7 DNA Sequencing一
1.2.8 Transcriptomics and DNA Microarrays
1.2.9 Proteomics and Mass Spectrometry.
1.2.10 ChIP-Chip andChIP.Seq
1.3 ExampleTopicsofBioinformatics
1.3.1 Examples of Algorithmatic Topics
1.3.2 ExamplesofStatisticalTopics.
1.3.3 Machine Learning and Pattern
RecognitionExamples
1.3.4 Basic Principles ofGenetics.
Re:fe:rences
2 Basic StatisticsforBioinformatics.
Yuanlie Lin and Rui Jiang
2.1 Introduction.
2.2 FoundationsofStatistics
2.2.1 Probabilities
2.2.2 RandomVariables
2.2.3 Multiple Random Variables
2.2.4 Distributions.
2.2.5 random sampling.
2.2.6 suf.cientstatistics
2.3 point estimation
2.3.1 method of moments.
2.3.2 maximum likelihoodestimators
2.3.3 bayes estimators
2.3.4 mean squared error.
2.4 hypothesistesting
2.4.1 likelihood ratio tests
2.4.2 errorprobabilitiesandthepowerfunction
2.4.3 p-values
2.4.4 some widely used tests
2.5 intervalestimation
2.6 analysis of variance
2.6.1 one-way analysis of variance.
2.6.2 two-wayanalysisofvariance.
2.7 regression models
2.7.1 simple linear regression.
2.7.2 logistic regression
2.8 statisticalcomputingenvironments.
2.8.1 downloadingand installation
2.8.2 storage, input, and outputof data.
2.8.3 distributions.
2.8.4 hypothesis testing
2.8.5 anova and linear model
references
3 topics in computational genomics 69 michael q. zhang and andrew d. smith
3.1 overview:genomeinformatics
3.2 finding protein-codinggenes.
3.2.1 how to identifya coding exon
3.2.2 how to identifya gene with multiple exons
3.3 identifyingpromoters.
3.4 genomic arraysand acgh/cnp analysis
3.5 introduction on computational analysis of transcriptionalgenomicsdata
3.6 modelingregulatory elements
3.6.1 word-based representations
3.6.2 thematrix-basedrepresentation
3.6.3 other representations.
3.7 predicting transcriptionfactor binding sites.
3.7.1 the multinomial model for describing sequences
3.7.2 scoring matrices and searching sequences
3.7.3 algorithmic techniques for identifying high-scoringsites
3.7.4 measuring statistical signi.cance of matches
3.8 modelingmotif enrichmentin sequences
3.8.1 motif enrichmentbased on likelihoodmodels.
3.8.2 relative enrichment between two sequence sets
3.9 phylogeneticconservationof regulatoryelements
3.9.1 three strategies for identifying conserved binding sites
3.9.2 considerationswhen using phylogeneticfootprinting
3.10 motif discovery.
3.10.1 word-basedandenumerativemethods
3.10.2 general statistical algorithms applied to motif discovery
3.10.3 expectationmaximization
3.10.4 gibbs sampling
references
4 statistical methods in bioinformatics 101 jun s. liu and bo jiang
4.1 introduction
4.2 basics of statistical modeling and bayesian inference.
4.2.1 bayesian method with examples.
4.2.2 dynamic programmingand hidden markovmodel
4.2.3 metropolis-hastingsalgorithm and gibbs sampling
4.3 gene expressionand microarrayanalysis
4.3.1 low-level processing and differential expression identi.cation
4.3.2 unsupervised learning
4.3.3 dimensionreductiontechniques
4.3.4 supervised learning
4.4 sequencealignment
4.4.1 pair-wise sequence analysis.
4.4.2 multiple sequence alignment
4.5 sequence pattern discovery
4.5.1 basic models and approaches
4.5.2 gibbsmotifsampler
4.5.3 phylogenetic footprinting method and the identi.cation of cis-regulatorymodules.
4.6 combining sequence and expression information for analyzing transcriptionregulation
4.6.1 motifdiscoveryinchip-arrayexperiment.
4.6.2 regression analysis of transcriptionregulation
4.6.3 regulatoryroleofhistonemodi.cation
4.7 protein structure and proteomics
4.7.1 protein structure prediction
4.7.2 protein chip data analysis.
references
5 algorithms in computational biology . 151 tao jiang and jianxing feng
5.1 introduction
5.2 dynamic programmingand sequence alignment
5.2.1 the paradigm of dynamic programming
5.2.2 sequence alignment
5.3 greedy algorithmsfor genome rearrangement
5.3.1 genome rearrangements
5.3.2 breakpoint graph, greedy algorithm and approximationalgorithm 159 references
6 multivariate statistical methods in bioinformatics research . 163 lingsongzhang and xihong lin
6.1 introduction
6.2 multivariate normal distribution
6.2.1 de.nition and notation
6.2.2 properties of the multivariate normal distribution
6.2.3 bivariate normal distribution
6.2.4 wishart distribution.
6.2.5 sample mean and covariance
6.3 one-sampleand two-sample multivariate hypothesis tests
6.3.1 one-sample t test for a univariate outcome
6.3.2 hotelling's t2 test for the multivariate outcome
6.3.3 properties of hotelling'st2 test.
6.3.4 paired multivariate hotelling's t2 test
6.3.5 examples
6.3.6 two-samplehotelling's t2 test
6.4 principalcomponentanalysis.
6.4.1 de.nition of principal components
6.4.2 computing principalcomponents
6.4.3 variance decomposition
6.4.4 pcawithacorrelationmatrix.
6.4.5 geometricinterpretation
6.4.6 choosing the numberof principal components
6.4.7 diabetes microarraydata.
6.5 factor analysis
6.5.1 orthogonalfactor model
6.5.2 estimating the parameters
6.5.3 an example
6.6 linear discriminant analysis
6.6.1 two-grouplinear discriminant analysis.
6.6.2 an example
6.7 classi.cation methods
6.7.1 introductionof classi.cation methods
6.7.2 k-nearestneighbormethod
6.7.3 density-basedclassi.cationdecisionrule.
6.7.4 quadraticdiscriminantanalysis.
6.7.5 logistic regression
6.7.6 supportvector machine
6.8 variableselection.
6.8.1 linear regression model
6.8.2 motivation for variable selection
6.8.3 traditionalvariableselectionmethods
6.8.4 regularization and variable selection
6.8.5 summary
references
7 association analysis for human diseases: methods and examples . 233 jurg ott and qingrunzhang
7.1 whydoweneedstatistics.
7.2 basic concepts in population and quantitative genetics.
7.3 genetic linkageanalysis
7.4 geneticcase-controlassociationanalysis.
7.4.1 basic steps in an association study
7.4.2 multiple testing corrections
7.4.3 multi-locusapproaches
7.5 discussion.
references
8 data mining and knowledge discovery methods with case examples
s. bandyopadphyayand u. maulik
8.1 introduction
8.2 different tasks in data mining
8.2.1 classi.cation
8.2.2 clustering
8.2.3 discoveringassociations.
8.2.4 issues and challengesin data mining
8.3 some commontools and techniques.
8.3.1 arti.cial neural networks
8.3.2 fuzzy sets and fuzzy logic
8.3.3 genetic algorithms
8.4 case examples
8.4.1 pixelclassi.cation
8.4.2 clustering of satellite images
8.5 discussionandconclusions
references
9 applied bioinformatics tools 271 jingchu luo
9.1 introduction
9.1.1 welcome.
9.1.2 about this web site
9.1.3 outline
9.1.4 lectures
9.1.5 exercises.
9.2 entrez
9.2.1 pubmed query
9.2.2 entrez query
9.2.3 my ncbi
9.3 expasy
9.3.1 swiss-prot query
9.3.2 explore the swiss-prot entry hba human.
9.3.3 database query with the ebi srs
9.4 sequencealignment
9.4.1 pairwise sequence alignment
9.4.2 multiple sequence alignment
9.4.3 blast
9.5 dna sequence analysis
9.5.1 gene structure analysis and prediction
9.5.2 sequencecomposition
9.5.3 secondarystructure.
9.6 protein sequence analysis
9.6.1 primary structure
9.6.2 secondarystructure.
9.6.3 transmembranehelices
9.6.4 helical wheel
9.7 motif search
9.7.1 smart search
9.7.2 memesearch.
9.7.3 hmm search
9.7.4 sequence logo
9.8 phylogeny
9.8.1 protein
9.8.2 dna
9.9 projects
9.9.1 sequence, structure, and function analysis of the bar-headed goose hemoglobin.
9.9.2 exercises.
9.10 literature
9.10.1 courses and tutorials
9.10.2 scienti.c stories
9.10.3 free journalsand books
9.11 bioinformaticsdatabases
9.11.1 list of databases
9.11.2 database query systems
9.11.3 genome databases
9.11.4 sequencedatabases.
9.11.5 proteindomain,family,andfunctiondatabases.
9.11.6 structure databases
9.12 bioinformaticstools
9.12.1 list of bioinformatics tools at international bioinformaticscenters
9.12.2 web-basedbioinformaticsplatforms
9.12.3 bioinformatics packages to be downloaded and installed locally
9.13 sequence analysis
9.13.1 dotplot.
9.13.2 pairwise sequence alignment
9.13.3 multiple sequence alignment
9.13.4 motif finding
9.13.5 gene identi.cation
9.13.6 sequence logo
9.13.7 rna secondary structure prediction
9.14 database search.
9.14.1 blast search
9.14.2 other database search
9.15 molecular modeling
9.15.1 visualizationandmodelingtools
9.15.2 protein modelingweb servers
9.16 phylogeneticanalysisandtreeconstruction.
9.16.1 list of phylogenyprograms
9.16.2 online phylogenyservers
9.16.3 phylogenyprograms
9.16.4 displayofphylogenetictrees
references
10 foundations for the study of structure and function of proteins 303 zhirongsun
10.1 introduction
10.1.1 importanceof protein.
10.1.2 amino acids, peptides, and proteins.
10.1.3 some noticeable problems
10.2 basic concept of protein structure
10.2.1 different levels of protein structures
10.2.2 acting force to sustain and stabilize the high-dimensionalstructure of protein
10.3 fundamentalof macromoleculesstructuresand functions
10.3.1 differentlevelsofproteinstructure.
10.3.2 primary structure
10.3.3 secondarystructure.
10.3.4 supersecondarystructure.
10.3.5 folds
10.3.6 summary
10.4 basis of protein structure and function prediction
10.4.1 overview
10.4.2 the signi.cance of protein structure prediction
10.4.3 the field of machine learning.
10.4.4 homological protein structure prediction method
10.4.5 abinitiopredictionmethod
reference.
11 computational systems biology approaches for deciphering traditional chinese medicine 337 shao li and le lu
11.1 introduction
11.2 disease-related network.
11.2.1 fromagenelisttopathwayandnetwork
11.2.2 construction of disease-related network.
11.2.3 biological network modularity and phenotypenetwork.
11.3 tcm zheng-related network
11.3.1 "zheng" in tcm
11.3.2 acsb-basedcasestudyfortcmzheng
11.4 network-based study for tcm "fu fang"
11.4.1 systems biology in drug discovery
11.4.2 network-based drug design
11.4.3 progresses in herbal medicine
11.4.4 tcm fu fang (herbal formula)
11.4.5 a network-based case study for tcm fu fang
references
12 advanced topics in bioinformatics and computational biology . 369 bailin hao, chunting zhang, yixue li, hao li, liping wei, minoru kanehisa, luhualai, runsheng chen, nikolaus rajewsky, michael q. zhang, jingdonghan, rui jiang, xuegong zhang, and yanda li
12.1 prokaryotephylogenymeets taxonomy
12.2 z-curve method and its applications in analyzing eukaryoticand prokaryotic genomes
12.3 insights into the coupling of duplication events and macroevolution from an age pro.le of transmembranegene families
12.4 evolution of combinatorial transcriptional circuits inthefungallineage.
12.5 can a non-synonymous single-nucleotide polymorphism (nssnp) affect protein function analysis from sequence, structure, and enzymatic assay
12.6 bioinformatics methods to integrate genomic andchemicalinformation
12.7 from structure-based to system-based drug design
12.8 progressin the study of noncodingrnas in c. elegans
12.9 identifyingmicrornas and their targets
12.10 topics in computationalepigenomics
12.11 understanding biological functions through molecular networks
12.12 identi.cationof network motifs in random networks
12.13 examples of pattern recognition applicationsin bioinformatics.
12.14 considerationsin bioinformatics
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:9分
书籍信息完全性:5分
网站更新速度:3分
使用便利性:5分
书籍清晰度:5分
书籍格式兼容性:5分
是否包含广告:3分
加载速度:5分
安全性:6分
稳定性:4分
搜索功能:8分
下载便捷性:4分
下载点评
- 实惠(292+)
- 书籍完整(184+)
- 书籍多(320+)
- 中评多(83+)
- 引人入胜(208+)
- 傻瓜式服务(263+)
- 差评少(555+)
- 四星好评(193+)
下载评价
- 网友 温***欣:
可以可以可以
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 濮***彤:
好棒啊!图书很全
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 郗***兰:
网站体验不错
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 国***芳:
五星好评
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 融***华:
下载速度还可以
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 谢***灵:
推荐,啥格式都有
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 宫***玉:
我说完了。
喜欢"生物信息学课程导引"的人也看了
微分几何入门与广义相对论(下册.第二版) 2025 chm pdf kindle rb azw3 下载 115盘
世界儿童共享的经典丛书:365夜故事 2025 chm pdf kindle rb azw3 下载 115盘
霸拥天下 2025 chm pdf kindle rb azw3 下载 115盘
内部控制 2025 chm pdf kindle rb azw3 下载 115盘
高达W外传 2025 chm pdf kindle rb azw3 下载 115盘
9787115344915 2025 chm pdf kindle rb azw3 下载 115盘
屈辞体研究——学海一牛鸣 2025 chm pdf kindle rb azw3 下载 115盘
国际贸易学:理论、政策与实证(第二版) 2025 chm pdf kindle rb azw3 下载 115盘
电压型PWM整流器的非线性控制 王久和 著 机械工业出版社【正版】 2025 chm pdf kindle rb azw3 下载 115盘
壬归 2025 chm pdf kindle rb azw3 下载 115盘
- Pocket Guide Shanghai 2025 chm pdf kindle rb azw3 下载 115盘
- 量子信息论:物理原理和某些进展 2025 chm pdf kindle rb azw3 下载 115盘
- 牛津中阶英汉双解词典 2025 chm pdf kindle rb azw3 下载 115盘
- MBA MPA MPAcc MEM管理类与经济类综合能力逻辑历年真题全解(题型分类版)(套装2册) 2025 chm pdf kindle rb azw3 下载 115盘
- 9787564334123 2025 chm pdf kindle rb azw3 下载 115盘
- 包邮!包票!余世维企业变革与文化6VCD视频讲座光盘现货 2025 chm pdf kindle rb azw3 下载 115盘
- 教養聰明小跳豆 2025 chm pdf kindle rb azw3 下载 115盘
- 看盘细节全书 2025 chm pdf kindle rb azw3 下载 115盘
- 《英语词汇分频速记(2017版)》 2025 chm pdf kindle rb azw3 下载 115盘
- 你也可以做老板 2025 chm pdf kindle rb azw3 下载 115盘
书籍真实打分
故事情节:8分
人物塑造:3分
主题深度:7分
文字风格:9分
语言运用:3分
文笔流畅:8分
思想传递:3分
知识深度:4分
知识广度:5分
实用性:3分
章节划分:4分
结构布局:5分
新颖与独特:4分
情感共鸣:9分
引人入胜:9分
现实相关:5分
沉浸感:3分
事实准确性:3分
文化贡献:4分